Drexel University Catalog 2006 / 2007

Table of Contents

The School of Biomedical Engineering, Science and Health Systems: Undergraduate Programs

About the School	<u>2</u>
Underoraduate Maior	
Biomedical Engineering	6
About the Major	
Concentrations	
Biomaterials and Tissue Engineering	7
About the Concentration, Requirements	<u>.</u>
Biomechanics and Human Performance Engineering	1 0
About the Concentration, Requirements	
Biomedical Informatics	13
About the Concentration, Requirements	
Biomedical Systems and Imaging	16
About the Concentration, Requirements	
Neuroengineering	19
About the Concentration, Requirements	

1 —

The School of Biomedical Engineering, Science and Health Systems

The School of Biomedical Engineering, Science, and Health Systems (formerly the Biomedical Engineering and Science Institute, founded in 1961) is a nationally recognized center for research in biomedical engineering and science offering multidisciplinary instruction on a full- and part-time basis at the graduate and undergraduate levels.

The School of Biomedical Engineering, Science, and Health Systems offers two undergraduate Bachelor of Science degree programs:

- Biomedical Engineering
- Health Systems and Technology

Because of the interdisciplinary nature of both programs, personalized faculty advising is stressed. In both programs, students work closely with faculty advisors to select core and elective courses offered by the School of Biomedical Engineering, Science, and Health Systems as well as other academic units of the University, including the College of Engineering; the College of Arts and Sciences; the LeBow College of Business; the College of Information Systems and Technology; and the School of Environmental Science, Engineering, and Policy.

The School is the beneficiary of a major endowment that sponsors chair professorships and assistantships. Areas of strength in research and education include biosensors, biomedical ultrasound, biomedical imaging, biomedical systems and signal processing, biomechanics, biomaterials, tissue and cellular engineering, neuroengineering, human performance, and cardiovascular systems. New academic initiatives focus on biomedical optics and bioinformatics and computational biomedicine.

The faculty includes individuals with specialties in engineering, physics, mathematics, biostatistics, life science, medicine, and clinical work. Of the 93 associated full-time Drexel faculty members, 20 are core faculty members and 73 have joint appointments. Some 52 adjunct faculty members from regional institutions and industry participate in research and academic programs of the School.

Metropolitan Philadelphia has one of the highest concentrations of medical institutions and pharmaceutical, biotechnology, and medical devices and systems industries in the nation. In 2002, Drexel University merged with MCP Hahnemann University, which includes the MCP Hahnemann School of Medicine—one of the nation's largest medical schools. The School has also formed an academic alliance with Thomas Jefferson University, another prominent medical university, and has entered into a joint initiative in bioinformatics with the Coriell Institute for Medical Research and the Windber Research Institute. These initiatives ensure that students will have ample opportunities in basic research and clinical experience as well as innovative new academic programs.

Program Description

Biomedical engineering is concerned with the application of engineering and science methodologies to the analysis and solution of biological and physiological problems and to the delivery of health care. The biomedical engineer requires the analytical tools and broad physical and mathematical knowledge of modern engineering and science, a fundamental understanding of the biological or

physiological system, and familiarity with recent technological breakthroughs. The biomedical engineer connects traditional engineering disciplines with living systems and may work in either direction, applying the patterns of living organisms to engineering design or engineering new approaches to human health. Thus on the one hand, the biomedical engineer may use his or her knowledge of physiological systems to develop artificial tissues or neural networks. On the other hand, he or she may use engineering know-how to create new equipment or environments for such purposes as maximizing human performance, accelerating wound healing, or providing noninvasive diagnostic tools.

The School of Biomedical Engineering, Science, and Health Systems, in collaboration with the College of Engineering, offers a unique B.S. degree program in <u>biomedical engineering</u>. This program differentiates itself from those offered at other institutions in several ways, including an emphasis on a fundamental and comprehensive education in the principles and methods of engineering, case-study and interdisciplinary courses, professional electives, a capstone design project, and several terms of employment in industry, in clinics or medical research laboratories (co-op program).

The School of Biomedical Engineering, Science and Health Professions

Co-operative education and career opportunities available to students include employment in the medical device, equipment, and systems industry; the biomaterial and implant industry; the pharmaceutical industry; the biotechnology and agricultural industry; the telemedicine and tele-health industry; health care; medical and clinical information and management systems; and biomedical technology transfer. Preprofessional options available in the academic programs of the School prepare students for admission to schools of medicine, dentistry, and veterinary medicine. Students may also choose to continue their education at the graduate level to prepare for careers in research and development in biomedical engineering and science.

Visit the <u>Drexel Steinbright Career Development Center</u> page for more detailed information on co-op and post-graduate opportunities.

The School of Biomedical Engineering, Science and Health Systems

Accelerated Program and Bachelor's/Master's Dual Degree Program

The Accelerated Program provides opportunities for highly competitive and strongly motivated students to progress toward their educational goals at their own pace. Primarily through advanced placement, credit by examination, flexibility of scheduling, and independent study, the program makes it possible to complete the undergraduate curriculum and initiate graduate study in less than the five years required by the standard curriculum.

Bachelor's/Master's Dual Degree Program

Drexel offers a combined MS/BS degree program for our top engineering students who want to obtain both degrees in the same time period as most students obtain a Bachelors degree.

Preprofessional Programs

Students who want to prepare for admission to schools of medicine, dentistry, or veterinary medicine, including the B.A./B.S./M.D. and early assurance programs at the Drexel College of Medicine, may obtain professional counseling and assistance from the Office of Preprofessional Programs, 215-895-2437.

University Honors

Program Students in the Biomedical Engineering program may apply for admission to the University Honors Program. Admission depends on superior academic performance at Drexel and may be approved after a personal interview with the Honors Committee.

University Leadership Program

Drexel graduates in Biomedical Engineering will be the leaders of their profession-and their communities-- in the twenty-first century. The University Leadership Program helps cultivate leadership skills and engages students in exploring the complex aspects of successful leadership by offering multi-dimensional courses featuring service learning.

Biomedical Engineering

Bachelor of Science Degree: 192.0 credits

About the major

Biomedical engineering is an innovative Bachelor of Science degree program developed and delivered in collaboration with the College of Engineering. It prepares students to conceive, design, and develop devices and systems that improve human health and quality of life. Biomedical engineering is the convergence of life sciences with engineering. Biomedical engineers combine the strengths of both fields. From child car seats and football helmets to drug-delivery systems, minimally invasive surgery, and noninvasive imaging technology, the work of the biomedical engineer makes a difference in everyone's life.

As preparation for the major in biomedical engineering, students are strongly encouraged to take AP biology courses in high school.

Program objectives

The undergraduate biomedical engineering curriculum is designed to strike a balance between academic breadth in biomedical engineering and specialization in an area of concentration:

- Biomaterials and Tissue Engineering
- Biomechanics and Human Performance Engineering
- Biomedical Informatics
- Biomedical Systems and Imaging
- <u>Neuroengineering</u>

Following the tDEC model, the program provides innovative experiences in handson experimentation and engineering design as well as opportunities for personal growth and development of leadership and communication skills.

Working with a faculty advisor, students can select their core and elective courses from the curricula offered by the School of Biomedical Engineering, Science, and Health Systems and the Departments of Bioscience and Biotechnology, Chemistry, Physics, Mathematics, Computer Science, Chemical Engineering, Mechanical Engineering, Materials Engineering, Electrical and Computer Engineering, and the College of Information Science and Technology.

For more information, visit the <u>The School of Biomedical Engineering, Science, and</u> <u>Health Systems'</u> web site.

Biomaterials and Tissue Engineering

Bachelor of Science Degree in Biomedical Engineering: 198.0 credits

About the concentration

The concentration in Biomaterials and Tissue Engineering includes courses from the Departments of Chemical and Materials Engineering. The program builds on the fundamental knowledge of natural and synthetic biomaterials and cellular biology and educates students in the emerging field of cellular and tissue engineering.

Biomaterials research has recently expanded to include fibrous materials and various prosthetic devices requiring the use of both synthetic and natural fibers. The emphasis is on improved materials and design of biological replacement tissues through cellular tissue engineering.

For more information about this concentration, see Drexel's <u>School of Biomedical</u> Engineering, Science, and Health Systems web site.

Biomedical Engineering

Biomaterials and Tissue Engineering Concentration Bachelor of Science Degree: 192.0 credits

General education requirements		Credits
<u>HIST 285</u>	Technology in Historical Perspective	3.0
ENGL 101	Expository Writing and Reading	3.0
ENGL 102	Persuasive Writing and Reading	3.0
ENGL 103	Analytical Writing and Reading	3.0
<u>UNIV 101</u>	The Drexel Experience	2.0
	Liberal studies electives (3)	9.0
	General studies electives* (2)	6.0

Engineering core courses		Credits
<u>MATH 121</u>	Calculus I	4.0
<u>MATH 122</u>	Calculus II	4.0
MATH 200	Multivariate Calculus	4.0
PHYS 101	Fundamentals of Physics I	4.0
PHYS 102	Fundamentals of Physics II	4.0
CHEM 101	General Chemistry I	3.5
<u>CHEM 102</u>	General Chemistry II	4.5
<u>BIO 141</u>	Essential Biology	4.5
<u>CS 121</u>	Computational Laboratory I	1.0
<u>CS 122</u>	Computational Laboratory II	1.0
<u>CS 123</u>	Computational Laboratory III	1.0
ENGR 101	Engineering Design Laboratory I	2.0
ENGR 102	Engineering Design Laboratory II	2.0
ENGR 103	Engineering Design Laboratory III	2.0
TDEC 201	Energy I	3.0
TDEC 202	Energy II	3.0
TDEC 211	Materials I	3.0
TDEC 221	Systems I	3.0
TDEC 222	Systems II	3.0
TDEC 231	Evaluation/Presentation of Experimental Data I	4.0
TDEC 232	Evaluation/Presentation of Experimental Data II	4.0

BIO 201	Human Physiology I	4.0
BIO 203	Human Physiology II	4.0
BMES 125	Foundations of Biomedical Engineering	2.0
BMES 212	The Body Synthetic	3.0
BMES 221	Engineering Principles of Living Systems I	4.0
BMES 222	Engineering Principles of Living Systems II	4.0
BMES 301	Experimental Biomechanics Laboratory	2.0

BMES 338	Biomedical Ethics and Law	4.0
BMES 491	Senior Design I	3.0
BMES 492	Senior Design II	3.0
BMES 493	Senior Design III	3.0
ECE 201	Foundations of Electric Circuits	3.0
MATH 290	Linear Modeling for Engineers	4.0

Biomaterials and Tissue Engineering concentration courses		
BIO 214	Principles of Cell Biology	3.0
BIO 215	Techniques of Cell Biology	2.5
BIO 218	Principles of Molecular Biology	3.0
BIO 219	Techniques of Molecular Biology	2.5
BMES 375	Computational Bioengineering	4.0
BMES 451	Transport Phenomena in Living Systems I	4.0
BMES 461	Biomaterials I	3.0
BMES 462	Biomaterials II	3.0
BMES 471	Foundations of Tissue Engineering I	4.0
BMES 472	Foundations of Tissue Engineering II	4.0
BMES 473	Foundations of Tissue Engineering III	4.0
CHEM 241	Organic Chemistry I	4.0
CHEM 242	Organic Chemistry II	4.0
CHEM 244	Organic Chemistry Laboratory I	3.0
CHEM 245	Organic Chemistry Laboratory II	3.0
MEM 202	Engineering Mechanics: Statics	3.0
MEM 230	Mechanics of Materials I	4.0
MATE 280	Advanced Materials Laboratory	4.0
MATE 214	Introduction to Polymers	4.0

*General studies electives include all liberal arts electives plus additional subjects, such as business, which do not fall under the subject area of are science, math or engineering. See the Biomedical Engineering General and Liberal Studies List for approved courses (at the end of this document, on page 22).

Writing-Intensive Course Requirements

In order to graduate, all students beginning with the entering class of 2002/01 (fall, 2002) must pass three writing-intensive courses after their freshman year. Two writing-intensive courses must be in a student's major. The third can be in any discipline. Students are advised to take one writing-intensive class each year, beginning with the sophomore year, and to avoid "clustering" these courses near the end of their matriculation. Transfer students need to meet with an academic advisor to review the number of writing-intensive courses required to graduate.

A "WI" next to a course in this catalog indicates that this course can fulfill a writingintensive requirement. Departments will designate specific sections of such courses as writing-intensive. Sections of writing-intensive courses are not indicated in this catalog. Students should check the section comments in Banner when registering. Students scheduling their courses in Banner can also conduct a search for courses with the attribute "WI" to bring up a list of all writing-intensive courses available that term. For more information on writing-intensive courses, see the Drexel University Writing Program's Writing-Intensive Course page.

Biomechanics and Human Performance Engineering

Bachelor of Science Degree in Biomedical Engineering: 192.0 credits

About the concentration

The Biomechanics concentration applies engineering principles to study the interactions between humans and various machine systems in both working and living environments. Courses in this area of specialization cover such topics as the mechanics of materials, chronobiology, biomechanics, and human factors and cognitive engineering.

For more information about this concentration, see Drexel's <u>School of Biomedical</u> <u>Engineering, Science, and Health Systems</u> web site.

Biomedical Engineering

Biomechanics and Human Performance Engineering Concentration *Bachelor of Science Degree: 192.0 credits*

General education requirements		Credits
<u>HIST 285</u>	Technology in Historical Perspective	3.0
ENGL 101	Expository Writing and Reading	3.0
ENGL 102	Persuasive Writing and Reading	3.0
ENGL 103	Analytical Writing and Reading	3.0
<u>UNIV 101</u>	The Drexel Experience	2.0
	Liberal studies electives (2)	6.0
	General studies electives* (2)	6.0
	Free elective	2.0

Engineering core courses		Credits
<u>MATH 121</u>	Calculus I	4.0
MATH 122	Calculus II	4.0
<u>MATH 200</u>	Multivariate Calculus	4.0
<u>PHYS 101</u>	Fundamentals of Physics I	4.0
PHYS 102	Fundamentals of Physics II	4.0
<u>CHEM 101</u>	General Chemistry I	3.5
<u>CHEM 102</u>	General Chemistry II	4.5
<u>BIO 141</u>	Essential Biology	4.5
<u>CS 121</u>	Computational Laboratory I	1.0
<u>CS 122</u>	Computational Laboratory II	1.0
<u>CS 123</u>	Computational Laboratory III	1.0
ENGR 101	Engineering Design Laboratory I	2.0
ENGR 102	Engineering Design Laboratory II	2.0
ENGR 103	Engineering Design Laboratory III	2.0
TDEC 201	Energy I	3.0
TDEC 202	Energy II	3.0
TDEC 211	Materials I	3.0
TDEC 221	Systems I	3.0
TDEC 222	Systems II	3.0
TDEC 231	Evaluation/Presentation of Experimental Data I	4.0
TDEC 232	Evaluation/Presentation of Experimental Data II	4.0

<u>BIO 201</u>	Human Physiology I	4.0
<u>BIO 203</u>	Human Physiology II	4.0
<u>BMES 125</u>	Foundations of Biomedical Engineering	2.0
<u>BMES 212</u>	The Body Synthetic	3.0
<u>BMES 221</u>	Engineering Principles of Living Systems I	4.0
<u>BMES 222</u>	Engineering Principles of Living Systems II	4.0

BMES 301	Experimental Biomechanics Laboratory	2.0
BMES 338	Biomedical Ethics and Law	4.0
BMES 491	Senior Design I	3.0
<u>BMES 492</u>	Senior Design II	3.0
BMES 493	Senior Design III	3.0
ECE 201	Foundations of Electric Circuits	3.0
<u>MATH 290</u>	Linear Modeling for Engineers	4.0

Biomechanics and Human Performance Engineering concentration

0001000		
BMES 302	Biomeasurements Laboratory	2.0
BMES 303	Biomedical Electronics Laboratory	2.0
BMES 304	Ultrasound Images Laboratory	2.0
BMES 375	Computational Bioengineering	4.0
or		
BMES 401	Biosensors I	4.0
BMES 411	Chronoengineering I	3.0
BMES 412	Chronoengineering II	3.0
BMES 440	Biodynamics	3.0
BMES 441	Biomechanics I	4.0
BMES 442	Biomechanics II	4.0
BMES 451	Transport Phenomena in Living Systems I	4.0
<u>MEM 202</u>	Engineering Mechanics: Statics	3.0
<u>MEM 230</u>	Mechanics of Materials I	4.0
<u>MEM 238</u>	Engineering Mechanics: Dynamics	4.0
PSY 101	General Psychology	3.0
	Biomechanics and Human Peformance electives (4)	12.0

Suggested Biomechanics and Human Performance concentration electives

BMES 443	Biomechanics III	4.0
<u>PSY 213</u>	Sensation and Perception	3.0
<u>PSY 332</u>	Human Factors and Cognitive Engineering	3.0
<u>PSY 410</u>	Neuropsychology	3.0
<u>BMES 310</u>	Biomedical Statistics	4.0

*General studies electives include all liberal arts electives plus additional subjects, such as business, which do not fall under the subject area of are science, math or engineering. See the <u>Biomedical Engineering General and Liberal Studies List</u> for approved courses (at the end of this document, on page 22).

Writing-Intensive Course Requirements

In order to graduate, all students beginning with the entering class of 2002/01 (fall, 2002) must pass three writing-intensive courses after their freshman year. Two writing-intensive courses must be in a student's major. The third can be in any discipline. Students are advised to take one writing-intensive class each year, beginning with the sophomore year, and to avoid "clustering" these courses near the end of their matriculation. Transfer students need to meet with an academic advisor to review the number of writing-intensive courses required to graduate.

A "WI" next to a course in this catalog indicates that this course can fulfill a writingintensive requirement. Departments will designate specific sections of such courses as writing-intensive. Sections of writing-intensive courses are not indicated in this catalog. Students should check the section comments in Banner when registering. Students scheduling their courses in Banner can also conduct a search for courses with the attribute "WI" to bring up a list of all writing-intensive courses available that term. For more information on writing-intensive courses, see the Drexel University Writing Program's <u>Writing-Intensive Course</u> page.

Bioinformatics

Bachelor of Science Degree in Biomedical Engineering: 192.0 credits

About the concentration

Bioinformatics is an emerging field of science that is concerned with the management, analysis and visualization of the flood of data being generated in molecular and cellular biology, genomics and other areas of biology and biomedicine. The field of bioinformatics enables information at the gene, protein, cell, tissue, organ, and system level to be integrated and interpreted for early detection, accurate diagnosis, and effective treatment of complex diseases such as cancer.

The Bioinformatics concentration includes courses in biology, computer science, and information technology. The concentration introduces information handling systems for people in the allied health professions, with specific examples drawn from health care and covers locating, manipulating, and displaying information in the health system setting. Students are also introduced to the mathematical and computational analysis of biological systems. The systems analyzed include the genome, protein and gene networks, cell division cycles, and cellular level disease. Mathematical tools include matrix algebra, differential equations, cellular automata, and cluster analysis.

For more information about this concentration, see Drexel's <u>School of Biomedical</u> Engineering, <u>Science</u>, and <u>Health Systems</u> web site.

Biomedical Engineering

Biomedical Informatics Concentration

Bachelor of Science Degree: 192.0 credits

General education requirements		Credits
<u>HIST 285</u>	Technology in Historical Perspective	3.0
ENGL 101	Expository Writing and Reading	3.0
ENGL 102	Persuasive Writing and Reading	3.0
ENGL 103	Analytical Writing and Reading	3.0
<u>UNIV 101</u>	The Drexel Experience	2.0
	Liberal studies electives (3)	9.0
	General studies electives* (2)	6.0

Engineering of	Engineering core courses	
MATH 121	Calculus I	4.0
MATH 122	Calculus II	4.0
<u>MATH 200</u>	Multivariate Calculus	4.0
PHYS 101	Fundamentals of Physics I	4.0
<u>PHYS 102</u>	Fundamentals of Physics II	4.0
CHEM 101	General Chemistry I	3.5
CHEM 102	General Chemistry II	4.5
<u>BIO 141</u>	Essential Biology	4.5
<u>CS 121</u>	Computational Laboratory I	1.0
<u>CS 122</u>	Computational Laboratory II	1.0
<u>CS 123</u>	Computational Laboratory III	1.0
ENGR 101	Engineering Design Laboratory I	2.0
ENGR 102	Engineering Design Laboratory II	2.0
ENGR 103	Engineering Design Laboratory III	2.0
TDEC 201	Energy I	3.0
TDEC 202	Energy II	3.0
TDEC 211	Materials I	3.0
TDEC 221	Systems I	3.0
TDEC 222	Systems II	3.0
TDEC 231	Evaluation/Presentation of Experimental Data I	4.0
TDEC 232	Evaluation/Presentation of Experimental Data II	4.0

BIO 201	Human Physiology I	4.0
BIO 203	Human Physiology II	4.0
BMES 125	Foundations of Biomedical Engineering	2.0
BMES 212	The Body Synthetic	3.0
BMES 221	Engineering Principles of Living Systems I	4.0
BMES 222	Engineering Principles of Living Systems II	4.0

BMES 301	Experimental Biomechanics Laboratory	2.0
BMES 338	Biomedical Ethics and Law	4.0
BMES 491	Senior Design I	3.0
<u>BMES 492</u>	Senior Design II	3.0
BMES 493	Senior Design III	3.0
ECE 201	Foundations of Electric Circuits	3.0
<u>MATH 290</u>	Linear Modeling for Engineers	4.0

Biomedical Informatics concentration courses

BIO 122	Cells and Genetics	4.5
<u>BIO 218</u>	Principles of Molecular Biology	3.0
BIO 219	Techniques of Molecular Biology	2.5
BMES 302	Biomeasurements Laboratory	2.0
BMES 303	Biomedical Electronics Laboratory	2.0
BMES 304	Ultrasound Images Laboratory	2.0
BMES 375	Computational Bioengineering	4.0
BMES 401	Biosensors I	4.0
<u>CS 171</u>	Computer Programming I	3.0
<u>CS 172</u>	Computer Programming II	3.0
<u>INFO 110</u>	Human-Computer Interaction I	3.0
INFO 200	Systems Analysis I	3.0
<u>INFO 210</u>	Database Management Systems	3.0
INFO 355	Systems Analysis II	3.0
	Bioinformatics concentration electives (2)	6.0

Suggested Bioinformatics electives

BMES 335	Biomedical Informatics I	3.0
BMES 336	Biomedical Informatics II	3.0

*General studies electives include all liberal arts electives plus additional subjects, such as business, which do not fall under the subject area of are science, math or engineering. See the <u>Biomedical Engineering General and Liberal Studies List</u> for approved courses (at the end of this document, on page 22).

Writing-Intensive Course Requirements

In order to graduate, all students beginning with the entering class of 2002/01 (fall, 2002) must pass three writing-intensive courses after their freshman year. Two writing-intensive courses must be in a student's major. The third can be in any discipline. Students are advised to take one writing-intensive class each year, beginning with the sophomore year, and to avoid "clustering" these courses near the end of their matriculation. Transfer students need to meet with an academic advisor to review the number of writing-intensive courses required to graduate.

A "WI" next to a course in this catalog indicates that this course can fulfill a writingintensive requirement. Departments will designate specific sections of such courses as writing-intensive. Sections of writing-intensive courses are not indicated in this catalog. Students should check the section comments in Banner when registering. Students scheduling their courses in Banner can also conduct a search for courses with the attribute "WI" to bring up a list of all writing-intensive courses available that term. For more information on writing-intensive courses, see the Drexel University Writing Program's <u>Writing-Intensive Course</u> page.

Biomedical Systems and Imaging

Bachelor of Science Degree in Biomedical Engineering: 192.0 credits

About the concentration

Biomedical imaging focuses on the theoretical and practical issues related to machine vision, image processing and analysis, and signal processing associated with such medical applications as ultrasound, optics, magnetic resonance, and autoradiographic imaging.

The concentration covers the fundamentals of modern imaging methodologies, covering aspects of light imaging, ultrasound imaging, and volumetric and functional imaging systems, and the principles of Magnetic Resonance Imaging (MRI).

For more information about this concentration, see Drexel's <u>School of Biomedical</u> Engineering, Science, and Health Systems web site.

Biomedical Engineering

Biomedical Systems and Imaging Concentration Bachelor of Science Degree: 192.0 credits

General education requirements		Credits
<u>HIST 285</u>	Technology in Historical Perspective	3.0
ENGL 101	Expository Writing and Reading	3.0
ENGL 102	Persuasive Writing and Reading	3.0
ENGL 103	Analytical Writing and Reading	3.0
<u>UNIV 101</u>	The Drexel Experience	2.0
	Liberal studies electives (3)	9.0
	General studies electives* (2)	6.0
	Free elective	3.0

Engineering core courses		Credits
<u>MATH 121</u>	Calculus I	4.0
MATH 122	Calculus II	4.0
<u>MATH 200</u>	Multivariate Calculus	4.0
<u>PHYS 101</u>	Fundamentals of Physics I	4.0
PHYS 102	Fundamentals of Physics II	4.0
<u>CHEM 101</u>	General Chemistry I	3.5
<u>CHEM 102</u>	General Chemistry II	4.5
<u>BIO 141</u>	Essential Biology	4.5
<u>CS 121</u>	Computational Laboratory I	1.0
<u>CS 122</u>	Computational Laboratory II	1.0
<u>CS 123</u>	Computational Laboratory III	1.0
ENGR 101	Engineering Design Laboratory I	2.0
ENGR 102	Engineering Design Laboratory II	2.0
ENGR 103	Engineering Design Laboratory III	2.0
TDEC 201	Energy I	3.0
TDEC 202	Energy II	3.0
TDEC 211	Materials I	3.0
TDEC 221	Systems I	3.0
TDEC 222	Systems II	3.0
TDEC 231	Evaluation/Presentation of Experimental Data I	4.0
TDEC 232	Evaluation/Presentation of Experimental Data II	4.0

<u>BIO 201</u>	Human Physiology I	4.0
BIO 203	Human Physiology II	4.0
BMES 125	Foundations of Biomedical Engineering	2.0
BMES 212	The Body Synthetic	3.0
BMES 221	Engineering Principles of Living Systems I	4.0
BMES 222	Engineering Principles of Living Systems II	4.0

BMES 301	Experimental Biomechanics Laboratory	2.0
BMES 338	Biomedical Ethics and Law	4.0
BMES 491	Senior Design I	3.0
<u>BMES 492</u>	Senior Design II	3.0
BMES 493	Senior Design III	3.0
ECE 201	Foundations of Electric Circuits	3.0
<u>MATH 290</u>	Linear Modeling for Engineers	4.0

Biomedical Systems and Imaging concentration courses

BMES 302	Biomeasurements Laboratory	2.0
BMES 303	Biomedical Electronics Laboratory	2.0
BMES 304	Ultrasound Images Laboratory	2.0
BMES 375	Computational Bioengineering	4.0
BMES 401	Biosensors I	4.0
BMES 421	Biomedical Imaging I	4.0
BMES 422	Biomedical Imaging II	4.0
BMES 423	Biomedical Imaging III	4.0
BMES 432	Biomedical Systems and Signals	3.0
ECES 302	Transform Methods and Filtering	4.0
ECES 304	Dynamic Systems and Stability	4.0
ECES 306	Introduction to Modulation and Coding	4.0
or		
ECES 356	Theory of Control	4.0
ECES 352	Digital Signals	4.0
<u>MATH 311</u>	Probability and Statistics I	4.0
	Biomedical Systems and Imaging electives (2)	6.0
	Technical elective	3.0

Suggested Biomedical Systems and Imaging electives

<u>BMES 391</u>	Biomedical Instrumentation I	3.0
BMES 392	Biomedical Instrumentation II	3.0

*General studies electives include all liberal arts electives plus additional subjects, such as business, which do not fall under the subject area of are science, math or engineering. See the <u>Biomedical Engineering General and Liberal Studies List</u> for approved courses (at the end of this document, on page 22).

Writing-Intensive Course Requirements

In order to graduate, all students beginning with the entering class of 2002/01 (fall, 2002) must pass three writing-intensive courses after their freshman year. Two writing-intensive courses must be in a student's major. The third can be in any discipline. Students are advised to take one writing-intensive class each year, beginning with the sophomore year, and to avoid "clustering" these courses near the end of their matriculation. Transfer students need to meet with an academic advisor to review the number of writing-intensive courses required to graduate.

A "WI" next to a course in this catalog indicates that this course can fulfill a writingintensive requirement. Departments will designate specific sections of such courses as writing-intensive. Sections of writing-intensive courses are not indicated in this catalog. Students should check the section comments in Banner when registering. Students scheduling their courses in Banner can also conduct a search for courses with the attribute "WI" to bring up a list of all writing-intensive courses available that term. For more information on writing-intensive courses, see the Drexel University Writing Program's <u>Writing-Intensive Course</u> page.

Neuroengineering

Bachelor of Science Degree in Biomedical Engineering: 192.5 credits

About the concentration

This concentration focuses on the theory of neural signaling, as well as addressing issues that have a neuroscientific basis, such as locomotion and pattern generation, central control of movement, and the processing of sensory information. Students pursing this concentration will learn the fundamental theory of cellular potentials and chemical signaling, the Hodgkin Huxeley description of action potential generation, circuit representations of neurons and be able to derive and integrate equations describing the circuit as well as design computer models.

For more information about this concentration, see Drexel's <u>School of Biomedical</u> <u>Engineering, Science, and Health Systems</u> web page.

Biomedical Engineering

Neuroengineering Concentration

Bachelor of Science Degree: 192.5 credits

General education requirements		Credits	
HIST 285	Technology in Historical Perspective	3.0	
ENGL 101	Expository Writing and Reading	3.0	
ENGL 102	Persuasive Writing and Reading	3.0	
ENGL 103	Analytical Writing and Reading	3.0	
<u>UNIV 101</u>	The Drexel Experience	2.0	
	Liberal studies electives (2)	6.0	
	General studies electives* (2)	6.0	

Engineering core courses		Credits
<u>MATH 121</u>	Calculus I	4.0
<u>MATH 122</u>	Calculus II	4.0
<u>MATH 200</u>	Multivariate Calculus	4.0
PHYS 101	Fundamentals of Physics I	4.0
PHYS 102	Fundamentals of Physics II	4.0
<u>CHEM 101</u>	General Chemistry I	3.5
CHEM 102	General Chemistry II	4.5
<u>BIO 141</u>	Essential Biology	4.5
<u>CS 121</u>	Computational Laboratory I	1.0
<u>CS 122</u>	Computational Laboratory II	1.0
<u>CS 123</u>	Computational Laboratory III	1.0
ENGR 101	Engineering Design Laboratory I	2.0
ENGR 102	Engineering Design Laboratory II	2.0
ENGR 103	Engineering Design Laboratory III	2.0
TDEC 201	Energy I	3.0
TDEC 202	Energy II	3.0
TDEC 211	Materials I	3.0
TDEC 221	Systems I	3.0
TDEC 222	Systems II	3.0
TDEC 231	Evaluation/Presentation of Experimental Data I	4.0
TDEC 232	Evaluation/Presentation of Experimental Data II	4.0

BIO 201	Human Physiology I	4.0
<u>BIO 203</u>	Human Physiology II	4.0
BMES 125	Foundations of Biomedical Engineering	2.0
BMES 212	The Body Synthetic	3.0
BMES 221	Engineering Principles of Living Systems I	4.0
BMES 222	Engineering Principles of Living Systems II	4.0
BMES 301	Experimental Biomechanics Laboratory	2.0

<u>BMES 338</u>	Biomedical Ethics and Law	4.0
<u>BMES 491</u>	Senior Design I	3.0
BMES 492	Senior Design II	3.0
<u>BMES 493</u>	Senior Design III	3.0
ECE 201	Foundations of Electric Circuits	3.0
<u>MATH 290</u>	Linear Modeling for Engineers	4.0

Neuroengineering concentration courses

	j	
<u>BIO 214</u>	Principles of Cell Biology	3.0
<u>BIO 215</u>	Techniques of Cell Biology	2.5
BMES 302	Biomeasurements Laboratory	2.0
BMES 303	Biomedical Electronics Laboratory	2.0
BMES 304	Ultrasound Images Laboratory	2.0
BMES 375	Computational Bioengineering	4.0
or		
BMES 401	Biosensors I	4.0
<u>BMES 411</u>	Chronoengineering I	3.0
BMES 451	Transport Phenomena in Living Systems I	4.0
BMES 477	Neuroengineering I	4.0
BMES 478	Neuroengineering II	4.0
ECES 302	Transform Methods and Filtering	4.0
ECES 304	Dynamic Systems and Stability	4.0
ECES 356	Theory of Control	4.0
PSY 101	General Psychology	3.0
PSY 213	Sensation and Perception	3.0
	Neuroengineering electives (2)	6.0
	Technical electives (2)	6.0

Suggested Neuroengineering concentration electives

BMES 310	Biomedical Statistics	4.0
<u>MEM 202</u>	Engineering Mechanics: Statics	3.0

*General studies electives include all liberal arts electives plus additional subjects, such as business, which do not fall under the subject area of are science, math or engineering. See the <u>Biomedical Engineering General and Liberal Studies List</u> for approved courses (at the end of this document on page 22).

Writing-Intensive Course Requirements

In order to graduate, all students beginning with the entering class of 2002/01 (fall, 2002) must pass three writing-intensive courses after their freshman year. Two writing-intensive courses must be in a student's major. The third can be in any discipline. Students are advised to take one writing-intensive class each year, beginning with the sophomore year, and to avoid "clustering" these courses near the end of their matriculation. Transfer students need to meet with an academic advisor to review the number of writing-intensive courses required to graduate.

A "WI" next to a course in this catalog indicates that this course can fulfill a writingintensive requirement. Departments will designate specific sections of such courses as writing-intensive. Sections of writing-intensive courses are not indicated in this catalog. Students should check the section comments in Banner when registering. Students scheduling their courses in Banner can also conduct a search for courses with the attribute "WI" to bring up a list of all writing-intensive courses available that term. For more information on writing-intensive courses, see the Drexel University Writing Program's <u>Writing-Intensive Course</u> page.

Biomedical Engineering

Liberal Studies/General Studies Electives List

Students obtaining an undergraduate degree in biomedical engineering from the School of Biomedical Engineering, Science and Health Systems are required to take a minimum of five general/liberal studies courses. Of these five, two must form a sequence (such as ECON 201 and ECON 202 or SOC 335 and SOC 336).

The School offers two general studies courses, BMES 340 – Health Care Administration and BMES 409 – Entrepreneurship for Biomedical Engineers, which are highly recommended. However, students are free to choose any of the courses listed below to fulfill this requirement.

Approved subjects

ARCH	Any Architecture course
AFAS	Any Africana course
ANTH	Any Anthropology course
ARTH	Any Art History course
BLAW	Any Legal Studies course
СОМ	Any Communications course (except COM 230)
DSMR	Any Design and Merchandising course
ECON	Any Economics course
ENGL	Any English course (except ENGL 101, 102, 103 & 105)
ENTR	Any Entrepreneurship course
FASH	Any Fashion Design course
VSCM	Graphic Design
HIST	Any History course
IAS	Any International Area Studies course
INTB	Any International Business course
AS-A	Any International Studies Abroad course
LEAD	Any Leadership course
MGMT	Any Management course
MKTG	Any Marketing course
ORGB	Any Organizational Behavior course
PHIL	Any Philosophy course
OPM	Any Operations Management course
PSCI	Any Political Science course
PSY	Any Psychology course (except PSY 212, 213, 332, 360, and 410)
SCRP	Any Screenwriting and Playwriting course
SMT	Any Sport Management course
SOC	Any Sociology course
THTR	Any Theatre course (except THTR 131, 132)
WMST	Any Women's Studies course
WRIT	Any Writing course

Approved language courses

Any language course may be taken as long as the course is 200-level or above.

Additional courses

The following subjects have restrictions on what courses can be taken. The approved courses are listed below:

approvou ooure		
BMES 336	Health Care Administration	3.0
BMES 409	Entrepreneurship for Biomedical Engineers	3.0
CULA 405	Culture and Gastronomy I	3.0
CULA 410	Culture and Gastronomy II	3.0
DANC 201	Dance Appreciation	3.0
DANC 220	History of Dance	3.0
DANC 325	20th-Century Dance	3.0
EDUC 112	Integrative Instruction	3.0
EDUC 301	Introduction to Personalized System of Instruction	3.0
EDUC 302	Advanced Seminar in Personalized System of Instruction	3.0
<u>FMVD 150</u>	American Classic Cinema	3.0
FMVD 160	European Cinema	3.0
FMVD 245	Non-Western Cinema	3.0
FMVD 250	The Documentary Tradition	3.0
FMVD 260	The Western	3.0
FMVD 262	Film Comedy	3.0
FMVD 265	Special Topics*	3.0
FMVD 280	Copywriting	3.0
FMVD 355	Contemporary Cinema	3.0
SCRP 220	Playwriting I	3.0
SCRP 225	Playwriting II	3.0
<u>SCRP 270</u>	Screenwriting I	3.0
<u>SCRP 275 WI</u>	Screenwriting II	3.0
<u>SCRP 285</u>	Writing for Nonfiction Film and Video	3.0
<u>HNRS 201</u>	Introduction to the Honors Program*	3.0
HNRS 202	Colloquium I*	3.0
<u>HNRS 301</u>	Colloquium II	3.0
HNRS 302	Honors Colloquium	3.0
<u>HNRS 303</u>	Honors Colloquium	3.0
<u>HNRS 304</u>	Honors Colloquium	3.0
<u>HNRS 306</u>	Honors Colloquium	3.0
<u>HNRS 307</u>	Honors Colloquium	3.0
LANG 180	Special Topics in Language	3.0
LING 101	Introduction to Linguistics	3.0
LING 102	Language and Society	3.0
<u>MUSC 121</u>	Music Theory I	3.0
MUSC 122	Music Theory II	3.0
<u>MUSC 123</u>	Music Theory III	3.0
MUSC 130	Introduction to Music	3.0
MUSC 232 WI	Music History II	3.0
MUSC 236	Rock Music Through the Mid 60's	3.0
MUSC 238	Rock Music Since the Mid 60's	3.0
MUSC 331	World Musics	3.0
MUSC 333	Afro-American Music USA	3.0
MUSC 336	History of Jazz	3.0
MUSC 338	American Popular Music	3.0

PHTO 275 WI	History of Photography I	3.0
<u>PHTO 276</u>	History of Photography II	3.0
<u>PHTO 236</u>	Photojournalism	4.0
<u>PHTO 350 WI</u>	Photography and Culture	3.0
PHTO 452	Contemporary Photography	3.0
<u>UNIV 241 WI</u>	Great Works Symposium	3.0

*On a case by case approval.

Top